Abstract
Intracytoplasmic sperm injection (ICSI) has become critical for the treatment of severe male infertility. The principal feature of ICSI is the direct injection of spermatozoon into an oocyte, which facilitates the production of fertilized embryos regardless of semen characteristics, such as sperm concentration and motility. However, the chromosomal integrity of ICSI zygotes is degraded compared to that of zygotes obtained via in vitro fertilization. This chromosomal damage may occur due to the injection of non-capacitated, acrosome-intact spermatozoa, which never enter the oocytes under natural fertilization. Furthermore, it is possible that the in vitro incubation and pre-treatment of spermatozoa during ICSI results in DNA damage. Chromosomal aberrations in embryos induce early pregnancy losses. However, these issues may be overcome by embryo production using gametes with guaranteed chromosomal integrity. Because conventional chromosome analysis requires fixing cells to obtain the chromosome spreads, embryos cannot be produced using the nucleus that has been analyzed. On the other hand, genome cloning using androgenic or gynogenic embryos provides an additional nucleus for chromosome analysis following embryo production. Thus, this review aims to highlight the hazardous nature of chromosomal aberrations in sperm during ICSI and to introduce a method for the prezygotic examination for chromosomal aberrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.