Abstract

Short-term adverse health effects of constituents of fine particles with aerodynamic diameters less than or equal to 2.5 μm (PM2.5) have been revealed. This study aimed to evaluate the real-time health outcome of ambulance services in association with ambient temperature and mass concentrations of total PM2.5 level and constituents in Kaohsiung City, an industrialized city with the worst air quality in Taiwan. Cumulative 6-day (lag0-5) relative risk (RR) and 95% confidence interval (CI) of daily ambulance services records of respiratory distress, coma and unconsciousness, chest pain, headaches/dizziness/vertigo/fainting/syncope, lying at public, and out-of-hospital cardiac arrest (OHCA) in association with ambient temperature and mass concentrations of total PM2.5 level and constituents (nitrate, sulfate, organic carbon (OC), and elemental carbon (EC)) from 2006 to 2010 were evaluated using a distributed lag non-linear model with quasi-Poisson function. Ambulance services of chest pain and OHCA were significantly associated with extreme high (30.8 °C) and low (18.2 °C) temperatures, with cumulative 6-day RRs ranging from 1.37 to 1.67 at the reference temperature of 24–25 °C. Daily total PM2.5 level had significant effects on ambulance services of lying at public and respiratory distress. After adjusting the cumulative 6-day effects of temperature and total PM2.5 level, RRs of ambulance services of lying at public associated with constituents at 90th percentile versus 25th percentile were 1.35 (95% CI: 1.08, 1.68) for sulfate and 1.20 (95% CI: 1.02, 1.41) for EC, while RR was 1.31 (95% CI: 1.09–1.58) for ambulance services of headache/dizziness/vertigo/fainting/syncope in association with OC at 90th percentile versus 25th percentile. Cause-specific ambulance services had various significant association with daily temperature, total PM2.5 level, and concentrations of constituents. Elemental carbon may have stronger associations with increased ambulance services than other constituents.

Highlights

  • Short-term adverse health effects of constituents of fine particles with aerodynamic diameters less than or equal to 2.5 μm ­(PM2.5) have been revealed

  • This study identified that only ambulance services of respiratory distress, lying at public, and of-hospital cardiac arrest (OHCA) increased as the ­PM2.5 concentration increased, with relative risk (RR) of 1.07–1.14 at 55.1 μg/m3 (90th percentile vs. 25th percentile; Table 2)

  • This study evaluated how ambulance services, including call helps of respiratory distress, coma and unconsciousness, chest pain, headache/dizziness/vertigo/fainting/syncope, lying in public, and OHCA, were associated with daily temperature, total ­PM2.5 level, and concentrations of constituents in the city with worst air quality, Kaohsiung City, in Taiwan

Read more

Summary

Introduction

Short-term adverse health effects of constituents of fine particles with aerodynamic diameters less than or equal to 2.5 μm ­(PM2.5) have been revealed. Cumulative 6-day (lag0-5) relative risk (RR) and 95% confidence interval (CI) of daily ambulance services records of respiratory distress, coma and unconsciousness, chest pain, headaches/dizziness/vertigo/fainting/syncope, lying at public, and out-of-hospital cardiac arrest (OHCA) in association with ambient temperature and mass concentrations of total ­PM2.5 level and constituents (nitrate, sulfate, organic carbon (OC), and elemental carbon (EC)) from 2006 to 2010 were evaluated using a distributed lag non-linear model with quasi-Poisson function. This study aimed to evaluate the risks of ambulance services of respiratory distress, coma and unconsciousness, chest pain, headaches/dizziness/vertigo/fainting/syncope, lying at public, and out-of-hospital cardiac arrest (OHCA) in association with total mass and constituents of fine particulate matters of 2.5 μm in Kaohsiung City, an industrialized city of Taiwan, using records of P­ M2.5, and its constituents (elemental carbon (EC), organic carbon (OC), nitrate, and sulfate), from 2006 to 2010

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.