Abstract

The classical option hedging problems have mostly been studied under continuous-time or equally spaced discrete-time models, which ignore two important components in the actual price: random trading times and market microstructure noise. In this paper, we study optimal hedging strategies for European derivatives based on a filtering micromovement model of asset prices with the two commonly ignored characteristics. We employ the local risk-minimization criterion to develop optimal hedging strategies under full information. Then, we project the hedging strategies on the observed information to obtain hedging strategies under partial information. Furthermore, we develop a related nonlinear filtering technique under the minimal martingale measure for the computation of such hedging strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.