Abstract
The aim of this paper is to provide a dual representation of convex and coherent risk measures in partially ordered linear spaces with respect to the algebraic dual space. An algebraic robust representation is deduced by weak separation of convex sets by functionals, which are assumed to be only linear; thus, our framework does not require any topological structure of the underlying spaces, and our robust representations are found without any continuity requirement for the risk measures. We also use such extensions to the representation of acceptability indices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.