Abstract

On June 24, 2015, Hongyanzi slope located in Wushan County of the Three Gorges Reservoir collapsed, generating 5–6-m-high impulse waves, which overturned 13 boats, killed 2 persons, and injured 4 persons. It is the second incident of landslide-generated impulse waves since the 175-m experimental impoundment in 2008. The emergency investigation shows that Hongyanzi landslide is a bedding soil landslide with a volume of 23 × 104 m3 induced by a series of triggering factors such as rainfall, flooding upstream, and reservoir drawdown. The nonlinear Boussinesq water wave model is used to reproduce the impulse waves generated by the landslide of June 24th. The numerical simulation results suggest that the wave propagation process was influenced by the T-shaped geomorphic conditions of river valley, and the coastal areas in the county seat were the major wave-affected areas, which is opposite to the landslide. The numerical wave process accord well with the observed incident, and the investigation values were in good agreement with the calculated values. Moreover, the worst-case scenario of the 7 × 104 m3 deformation mass beside Hongyanzi landslide is potential to generate impulse waves, which was predicted with the same numerical model. This adjacent deformation mass will probably generate impulse waves with maximum height and run-up of 2.2 and 2.0 m, respectively, and only a very few areas in the water course had waves rising to a height of 1 m or above. The research results provide a technical basis for emergency disposal to Hongyanzi landslide and navigation restriction in Wushan waterway. More importantly, it pushes the risk management of the navigation based on the impulse wave generated by landslide. It is advised that the Three Gorges Reservoir and other reservoirs around the world should put more efforts in performing special surveys and studies on the potential hazards associated with landslide-generated impulse waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.