Abstract
Abstract This paper addresses the risk management for optimal design and operations of shale gas supply chains under uncertainty of estimated ultimate recovery (EUR). A multiobjective two-stage stochastic mixed-integer linear programming model is proposed to optimize the expected total cost and the financial risk. The latter criterion is measured by conditional value-at-risk (CVaR) and downside risk. In this model, both design and planning decisions are considered with respect to shale well drilling, shale gas production, processing, multiple end-uses, and transportation. In order to solve this computationally challenging problem, we integrate both the sample average approximation method and the L-shaped method. The proposed model and solution methods are illustrated through a case study based on the Marcellus shale play. According to the optimization results, the stochastic model provides a feasible design for all the scenarios with the lowest expected total cost. Moreover, after risk management, total expected cost increases but the risk of high-cost scenarios is reduced effectively, and the CVaR management shows its advantage over downside risk management in this specific case study.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.