Abstract

Managing TG-51 reference dosimetry in a large hospital network can be a challenging task. The objectives of this study are to investigate the effectiveness of using Statistical Process Control (SPC) to manage TG-51 workflow in such a network. All the sites in the network performed the annual reference dosimetry in water according to TG-51. These data were used to cross-calibrate the same ion chambers in plastic phantoms for monthly QA output measurements. An energy-specific dimensionless beam quality cross-calibration factor, , was derived to monitor the process across multiple sites. The SPC analysis was then performed to obtain the mean, , standard deviation, σk, the Upper Control Limit (UCL) and Lower Control Limit (LCL) in each beam. This process was first applied to 15 years of historical data at the main campus to assess the effectiveness of the process. A two-year prospective study including all 30 linear accelerators spread over the main campus and seven satellites in the network followed. The ranges of the control limits (±3σ) were found to be in the range of 1.7% – 2.6% and 3.3% – 4.2% for the main campus and the satellite sites respectively. The wider range in the satellite sites was attributed to variations in the workflow. Standardization of workflow was also found to be effective in narrowing the control limits. The SPC is effective in identifying variations in the workflow and was shown to be an effective tool in managing large network reference dosimetry.

Highlights

  • Managing Task Group (TG)-51 reference dosimetry in a large hospital network can be a challenging task

  • The objectives of this study are to investigate the effectiveness of using Statistical Process Control (SPC) to manage TG-51 workflow in such a network

  • We have utilized SPC to monitor the pattern of Linac calibrations over 15 years and characterize the boundary conditions of the process

Read more

Summary

Introduction

Managing TG-51 reference dosimetry in a large hospital network can be a challenging task. SPC analysis was performed to obtain the mean, kqSnW , standard deviation, σ k , the Upper Control Limit (UCL) and Lower Control Limit (LCL) in each beam This process was first applied to 15 years of historical data at the main campus to assess the effectiveness of the process. The cross-sectional QA monitoring of multiple machines using SPC has not been the focus to improve the quality of clinical reference dosimetry within a large hospital network. The objectives of this present work are to utilize SPC to: 1) identify efficient metrics that correlate with variability in the TG-51 process; 2) specify the control

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call