Abstract

In this paper we consider a location-optimization problem where the classical uncapacitated facility location model is recast in a stochastic environment with several risk factors that make demand at each customer site probabilistic and correlated with demands at the other customer sites. Our primary contribution is to introduce a new solution methodology that adopts the mean–variance approach, borrowed from the finance literature, to optimize the “Value-at-Risk” (VaR) measure in a location problem. Specifically, the objective of locating the facilities is to maximize the lower limit of future earnings based on a stated confidence level. We derive a nonlinear integer program whose solution gives the optimal locations for the p facilities under the new objective. We design a branch-and-bound algorithm that utilizes a second-order cone program (SOCP) solver as a subroutine. We also provide computational results that show excellent solution times on small to medium sized problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.