Abstract
Proper and systematic management of food industry failures can improve the quality of products and save a lot on the costs of organizations and people’s health. One of the conventional methods for risk assessment is the Failure Modes and Effects Analysis (FMEA) which is often performed in a phase or stage. Compared to the combined methods, this method is less accurate due to similar priorities of failure in the evaluation and the lack of consideration of the interaction between risks. The current research has applied an integrated approach based on two techniques, FMEA and Fuzzy Cognitive Map (FCM), in a multi-stage manner to increase assessment accuracy and ranking of failures. By considering the risks of an industry in an uncertain environment and the causal relationships between failures, this approach can evaluate the industry’s risks better than conventional methods. In the research method, the initial prioritization of failures by the FMEA method is used as the input of the multi-stage FCM. The cause-and-effect relationship between the failures is determined by experts and the functional records of the processes, and the FCM is prepared. Since no research evaluates the risks of the malting industry step by step and considers the causal relationships between the risks, the present study has improved risk evaluation in the malting industry by using a multi-stage FCM. The ranking results with the proposed hybrid approach and its comparison with the conventional methods showed that the rating became more accurate, and the multiple priorities were improved. Managers of the malt beverage industry can make effective investment decisions to reduce or better control the risks of this industry by using the results of applying the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.