Abstract

In order to study the mechanism of the dual side roof cutting technology on the composite disaster of gas and coal spontaneous combustion in goaf, a model for the evolution of porosity and permeability in the dual side roof cutting working face was constructed. The location of the occurrence of the compound disaster of gas explosion and coal spontaneous combustion under the double-sided roof cutting mode was studied, and the sensitivity of the evolution pattern of the compound disaster area to the amount of air supply and gas gush was summarized. The results indicate that the top cutting pressure relief technology significantly reduces the permeability of porous media, and the sensitivity of the goaf on the intake side to airflow disturbances is significantly reduced. As the volume of air supply increases, the distance between the gas explosion risk area and the coal spontaneous combustion risk area gradually decreases, and the probability of composite disaster areas is 0. The increase of air supply and gas emission makes the gas concentration in the middle and deep goaf increase in an exponential function, and the width of the gas explosion risk area increases gradually. When the outflow reaches 40 ​m3/min, there is no composite disaster zone, indicating that the rapid increase in outflow inhibits the occurrence of composite disasters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call