Abstract

It is difficult to identify and assess the recently active faults, representing a risk factor for key human activities, in the areas of stable crust with slow tectonic deformation and reduced seismicity. We face the problem in the eastern Bohemian Massif (Central European Variscides) at a contact with the Eastern Alpine – Western Carpathian orogenic belt through building its integrated geodynamic model based on the long-term GNSS data cross-checked with the results from existing levelling, geological surveys, geophysical surveys, and a new geomorphological analysis. The model shows differently moving crustal blocks, determining the intervening boundary zones as the main risk regions, where weak earthquakes are also usually concentrated (primarily Diendorf–Čebín Tectonic Zone, Nectava–Konice Fault, Haná Faults, Bělá Fault and Bulhary Fault Shear Zone). The maximum horizontal GNSS differential velocities in the exposed Bohemian Massif reach up to 1.5–2.0 mm·yr−1. The up-thrusted segments of the Western Carpathians move individually ~2 mm·yr−1. The integration of a number of full-area datasets, corresponding to various dimensions and depth levels of crustal processes, allowed us to highlight the important fault zones as driving elements of regional geodynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.