Abstract

Recently, we developed a partial differential equation (PDE) that relates the age-specific prevalence of a chronic disease with the age-specific incidence and mortality rates in the illness-death model (IDM). With a view to planning population-wide interventions, the question arises how prevalence can be calculated if the distribution of a risk-factor in the population shifts. To study the impact of such possible interventions, it is important to deal with the resulting changes of risk-factors that affect the rates in the IDM. The aim of this work is to show how the PDE can be used to study such effects on the age-specific prevalence of a chronic disease, to demonstrate its applicability and to compare the results to a discrete event simulation (DES), a frequently used simulation technique. This is done for the first time based on the PDE which only needs data on population-wide epidemiological indices and is related to the von Foerster equation. In a simulation study, we analyse the effect of a hypothetical intervention against type 2 diabetes. We compare the age-specific prevalence obtained from a DES with the results predicted from modifying the rates in the PDE. The DES is based on 10000 subjects and estimates the effect of changes in the distributions of risk-factors. With respect to the PDE, the change of the distribution of risk factors is synthesized to an effective rate that can be used directly in the PDE. Both methods, DES and effective rate method (ERM) are capable of predicting the impact of the hypothetical intervention. The age-specific prevalences resulting from the DES and the ERM are consistent. Although DES is common in simulating effects of hypothetical interventions, the ERM is a suitable alternative. ERM fits well into the analytical theory of the IDM and the related PDE and comes with less computational effort.

Highlights

  • We developed a partial differential equation (PDE) that links the age-specific prevalence of a chronic disease with the age-specific incidence and mortality rates [1]

  • The red and blue solid lines depict the estimated prevalences based on the effective rate method

  • The confidence intervals are somewhat wider in higher age groups above 80 years which is caused by higher mortality rates and a decreased number of individuals in that age classes

Read more

Summary

Introduction

We developed a partial differential equation (PDE) that links the age-specific prevalence of a chronic disease with the age-specific incidence and mortality rates [1]. This PDE is related to the classical illness-death model (IDM) where each subject of the population under. To strengthen the use of the PDE we aim to demonstrate applicability of that approach in case only population-wide epidemiological indices, as incidence or prevalence, are available As it is of high interest in epidemiological research to project the effect of interventions on prevalences, we want to show how risk-factors can be incorporated in the PDE

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.