Abstract

Celiac Disease (CD) is an immune-mediated systemic disorder elicited by gluten and related prolamines in genetically susceptible individuals and it is the result of the interaction between genetic and environmental factors. Among genetic risk factors, the strongest association is with the HLA class II DQ region; nevertheless at least 39 non-HLA loci are associated with CD. Gluten is the main environmental trigger of the disease. In addition, infant feeding and weaning practices as well as timing of gluten introduction in the diet have been suggested to contribute to CD risk. Furthermore a role for infectious agents and microbiota composition in disease development has also been proposed.Aim of this short review is to discuss the current knowledge on both genetic and environmental risk factors for the development of CD; moreover we will provide a brief overview of the possible strategies that could be envisaged to prevent this condition, at least in the population at-risk.

Highlights

  • Celiac Disease (CD) is an immune-mediated systemic disorder elicited by gluten and related prolamines in genetically susceptible individuals, carrying the human leukocyte antigen (HLA)-DQ2 or HLA-DQ8 haplotypes, and characterized by the presence of a variable combination of gluten-dependent clinical manifestations, CDspecific antibodies, and a small intestinal enteropathy [1]

  • Among genetic factors associated with CD, the strongest association is with the HLA class II region

  • The results showed a cumulative incidence of CD at 3 years of age similar in the gluten group and placebo group (5,9 % and 4,5 % respectively)

Read more

Summary

Introduction

Celiac Disease (CD) is an immune-mediated systemic disorder elicited by gluten and related prolamines in genetically susceptible individuals, carrying the human leukocyte antigen (HLA)-DQ2 or HLA-DQ8 haplotypes, and characterized by the presence of a variable combination of gluten-dependent clinical manifestations, CDspecific antibodies, and a small intestinal enteropathy [1]. Gluten peptides, modified by tissue transglutaminase, are able to elicit both an innate and an adaptive HLA-restricted gluten specific immune response in the intestinal mucosa of genetically predisposed subjects, resulting in the infiltration of the epithelium with lymphocytes and tissue remodeling leading to villous atrophy [2]. Aim of this short review is to discuss the current knowledge on genetic and environmental risk factors involved in CD pathogenesis, and the possible strategies that could be envisaged to prevent disease development, at least in at-risk subjects

Genetic factors
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.