Abstract
Introduction: Fatal crashes that include at least one fatality of an occupant within 30 days of the crash cause large numbers of injured persons and property losses, especially when a truck is involved. Method: To better understand the underlying effects of truck-driver-related characteristics in fatal crashes, a five-year (from 2012 to 2016) dataset from the Fatality Analysis Reporting System (FARS) was used for analysis. Based on demographic attributes, driving violation behavior, crash histories, and conviction records of truck drivers, a latent class clustering analysis was applied to classify truck drivers into three groups, namely, ‘‘middle-aged and elderly drivers with low risk of driving violations and high historical crash records,” ‘‘drivers with high risk of driving violations and high historical crash records,” and ‘‘middle-aged drivers with no driving violations and conviction records.” Next, equivalent fatalities were used to scale fatal crash severities into three levels. Subsequently, a partial proportional odds (PPO) model for each driver group was developed to identify the risk factors associated with the crash severity. Results' Conclusions: The model estimation results showed that the risk factors, as well as their impacts on different driver groups, were different. Adverse weather conditions, rural areas, curved alignments, tractor-trailer units, heavier weights and various collision manners were significantly associated with the crash severities in all driver groups, whereas driving violation behaviors such as driving under the influence of alcohol or drugs, fatigue, or carelessness were significantly associated with the high-risk group only, and fewer risk factors and minor marginal effects were identified for the low-risk groups. Practical Applications: Corresponding countermeasures for specific truck driver groups are proposed. And drivers with high risk of driving violations and high historical crash records should be more concerned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.