Abstract
The appearance of pressure injuries is very common in patients bedridden for a long time due to a surgical procedure or a recovery process caused by an accident. Many studies have been carried out to monitor and prevent this condition, but the methodology used requires the direct or indirect intervention of a health professional to classify the risk of wound development. This study aims to demonstrate the development of a system capable of predicting the risk factor for the development of pressure injuries through the analysis of the Braden Scale parameters inserted by a health professional on an electronic interface, where through an algorithm based on artificial neural networks, which is responsible for processing, it will be possible to carry out the classification of the risk factor for pressure injuries. To acquire the friction and shear parameters, force sensors were used in a matrix architecture, together with a signal conditioning circuit as well as a control and communication drive via USB with the computer for sending data, as well as a graphical interface for entry of other parameters by the health professional.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.