Abstract
Failure mode and effects analysis (FMEA) is a widely used engineering technique for identifying and eliminating known and potential failures from systems, designs, products, processes or services. However, the conventional risk priority number method has been extensively criticized in the literature for a lot of reasons such as ignoring relative importance of risk factors, questionable multiplication procedure, and imprecisely evaluation. In this article, a new FMEA model based on fuzzy digraph and matrix approach is developed to solve the problems and improve the effectiveness of the traditional FMEA. All the information about risk factors like occurrence (O), severity (S) and detection (D) and their relative weights are expressed in linguistic terms, represented by fuzzy numbers. By considering the risk factors and their relative importance, a risk factors fuzzy digraph is developed for the optimum representation of interrelations. Then, corresponding fuzzy risk matrixes are formed for all the identified failure modes in FMEA and risk priority indexes are computed for determining the risk priorities of the failure modes. Finally, a case study of steam valve system is included to illustrate the proposed fuzzy FMEA and the advantages are highlighted by comparing with the listed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.