Abstract

BackgroundOn December 31, 2019, the World Health Organization was alerted to the occurrence of cases of pneumonia in Wuhan, Hubei Province, China, that were caused by an unknown virus, which was later identified as a coronavirus and named the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We aimed to estimate the reproductive number of SARS-CoV-2 in the Hubei Province and evaluate the risk of an acute respiratory coronavirus disease (COVID-19) outbreak outside China by using a mathematical model and stochastic simulations.ResultsWe constructed a mathematical model of SARS-CoV-2 transmission dynamics, estimated the rate of transmission, and calculated the reproductive number in Hubei Province by using case-report data from January 11 to February 6, 2020. The possible number of secondary cases outside China was estimated by stochastic simulations in various scenarios of reductions in the duration to quarantine and rate of transmission. The rate of transmission was estimated as 0.8238 (95% confidence interval [CI] 0.8095–0.8382), and the basic reproductive number as 4.1192 (95% CI 4.0473–4.1912). Assuming the same rate of transmission as in Hubei Province, the possibility of no local transmission is 54.9% with a 24-h quarantine strategy, and the possibility of more than 20 local transmission cases is 7% outside of China.ConclusionThe reproductive number for SARS-CoV-2 transmission dynamics is significantly higher compared to that of the previous SARS epidemic in China. This implies that human-to-human transmission is a significant factor for contagion in Hubei Province. Results of the stochastic simulation emphasize the role of quarantine implementation, which is critical to prevent and control the SARS-CoV-2 outbreak outside China.

Highlights

  • On December 31, 2019, the World Health Organization was alerted to the occurrence of cases of pneumonia in Wuhan, Hubei Province, China, that were caused by an unknown virus, which was later identified as a coronavirus and named the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

  • Data sources Data were obtained from the 2019-nCoV Global Cases by the Johns Hopkins Center for Systems Science and Engineering [4] and Novel Coronavirus (2019-nCoV) situation reports issued by the World Health Organization (WHO) [5]

  • SARS-CoV-2 transmission dynamics in Hubei Province The rate of transmission in Hubei Province is estimated to be 0.8238 and the reproductive number was calculated as 4.1192

Read more

Summary

Introduction

On December 31, 2019, the World Health Organization was alerted to the occurrence of cases of pneumonia in Wuhan, Hubei Province, China, that were caused by an unknown virus, which was later identified as a coronavirus and named the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We aimed to estimate the reproductive number of SARS-CoV-2 in the Hubei Province and evaluate the risk of an acute respiratory coronavirus disease (COVID-19) outbreak outside China by using a mathematical model and stochastic simulations. A novel coronavirus – the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) – emerged in Wuhan, Hubei Province, China in late December 2019. On January 30, 2020, the World Health Organization (WHO) declared a Public Health Emergency of International Concern (PHEIC) [1], and on January 31, 2020, the number of coronavirus disease (COVID-19) cases. It is worthwhile to measure the potential risk of SARS-CoV-2 transmission outside China when the quarantining of symptomatic infected individuals is delayed

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call