Abstract
The prediction of unmanned aerial vehicle (UAV) operators' unsafe acts is critical for preventing UAV incidents. However, there is a lack of research specifically focusing on UAV operators' unsafe acts, and existing approaches in related areas often lack precision and effectiveness. To address this, we propose a hybrid approach that combines the Human Factors Analysis and Classification System (HFACS) with random forest (RF) to predict and warn against UAV operators' unsafe acts. Initially, we introduce an improved HFACS framework to identify risk factors influencing the unsafe acts. Subsequently, we utilize the adaptive synthetic sampling algorithm (ADASYN) to rectify the imbalance in the dataset. The RF model is then used to construct a risk prediction and early warning model, as well as to identify critical risk factors associated with the unsafe acts. The results obtained through the improved HFACS framework reveal 33 risk factors, encompassing environmental influences, industry influences, unsafe supervision, and operators' states, contributing to the unsafe acts. The RF model demonstrates a significant improvement in prediction performance after applying ADASYN. The critical risk factors associated with the unsafe acts are identified as weak safety awareness, allowing unauthorized flight activities, lack of legal awareness, lack of supervision system, and obstacles. The findings of this study can assist policymakers in formulating effective measures to mitigate incidents resulting from UAV operators' unsafe acts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Risk analysis : an official publication of the Society for Risk Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.