Abstract
Abstract We consider the risk conscious solution of planning problems with uncertainties in the problem data. The problems are formulated as two-stage stochastic mixed-integer models in which some of the decisions (first-stage) have to be made under uncertainty and the remaining decisions (second-stage) can be made after the realization of the uncertain parameters. The uncertain model parameters are represented by a finite set of scenarios. The risk conscious optimization problem under uncertainty is solved by a stage decomposition approach using a multi-objective evolutionary algorithm which optimizes the expected scenario costs and the risk criterion with respect to the first-stage decisions. The second-stage scenario decisions are handled by mathematical programming. Results from numerical experiments for two real-world problems are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.