Abstract

Management of agricultural diffuse pollution requires targeting or prioritising critical source areas at various spatial scales within watersheds. This study develops, evaluates and illustrates a risk-based approach for assessment and targeting of source areas at catchment, subarea and individual farm scales. Catchment water quality data are used in conjunction with information on watershed characteristics from the New Zealand Land Resources Inventory at the subarea scale and land use information at the farm scale to assess risk and target source areas. Total phosphorus in the Lake Hayes Catchment, a high country pastoral catchment in the South Island of New Zealand, is used as a case study. Use, comparison and evaluation of several different methodologies for subareas and individual properties showed that a subarea in the upper catchment and one immediately upstream from the lake were the worst source areas. Targeting of other subareas varied dependent on the method used. The worst individual properties were targeted based on the combination of intensity of cattle and sheep grazing, fertilizer usage, bank erosion and location in the worst subareas. Water quality results are critical to successful targeting, particularly for convincing landowners that streams will benefit from best management practices on their properties. In addition to concentrations, average and extreme loadings are important. Data on catchment characteristics, particularly land use, are needed for targeting, but are not always readily available at small scales. This study demonstrated simple but useful methods for application of assessment information for quantitative targeting of contaminant source areas at different spatial scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call