Abstract
The rapid expansion of production of North American petroleum crude oil from shale has led to a significant increase in rail transport of crude oil. Broken rails are frequent causes of train accidents. Ultrasonic rail defect inspection is widely used to prevent train accidents caused by broken rails, thereby reducing the hazardous materials transportation risk. This paper describes a new methodology to estimate unit-train crude oil transportation risk by the frequency of location-specific rail defect inspection. The risk model was used to develop a Pareto optimization model that determines the frequency of segment-specific rail defect inspection to reduce the total-route risk in a cost-effective manner. A numerical case study was developed to illustrate the application of the risk analysis and optimization models. This research is intended to provide new methods and information to assist the railroad industry in optimizing investment in infrastructure improvement, thereby mitigating the risk of rail transport of crude oil and other hazardous materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.