Abstract
Managing residual chlorine in large water distribution systems (WDS) to minimize human health risk is a daunting task. In this research, a novel risk-based framework is developed and implemented in a distribution network spanning over 64km2 for supplying water to the city of Al-Khobar (Saudi Arabia) through 473-km-long water mains. The framework integrates the planning of linear assets (i.e., pipes) and placement of booster stations to optimize residual chlorine in the WDS. Failure mode and effect analysis are integrated with the fuzzy set theory to perform risk analysis. A vulnerability regarding the probability of failure of pipes is estimated from historical records of water main breaks. The consequence regarding residual chlorine availability has been associated with the exposed population depending on the land use characteristics (i.e., defined through zoning). EPANET simulations have been conducted to predict residual chlorine at each node of the network. A water quality index is used to assess the effectiveness of chlorine practice. Scenario analysis is also performed to evaluate the impact of changing locations and number of booster stations, and rehabilitation and/or replacement of vulnerable water mains. The results revealed that the proposed methodology could facilitate the utility managers to optimize residual chlorine effectively in large WDS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.