Abstract
This paper presents a quantitative method for the risk-based evaluation of Total Petroleum Hydrocarbons (TPH) in vapor intrusion investigations. Vapors from petroleum fuels are characterized by a complex mixture of aliphatic and, to a lesser extent, aromatic compounds. These compounds can be measured and described in terms of TPH carbon ranges. Toxicity factors published by USEPA and other parties allow development of risk-based, air and soil vapor screening levels for each carbon range in the same manner as done for individual compounds such as benzene. The relative, carbon range makeup of petroleum vapors can be used to develop weighted, site-specific or generic screening levels for TPH. At some critical ratio of TPH to a targeted, individual compound, the overwhelming proportion of TPH will drive vapor intrusion risk over the individual compound. This is particularly true for vapors associated with diesel and other middle distillate fuels, but can also be the case for low-benzene gasolines or even for high-benzene gasolines if an adequately conservative, target risk is not applied to individually targeted chemicals. This necessitates a re-evaluation of the reliance on benzene and other individual compounds as a stand-alone tool to evaluate vapor intrusion risk associated with petroleum.
Highlights
Much emphasis has been placed in the past ten-plus years on the potential intrusion of chlorinated solvent vapors into buildings from underlying contaminated soil and groundwater
If the ratio of Total Petroleum Hydrocarbons (TPH) to benzene in soil vapor measured in the field exceeds this value, the concentration of TPH in indoor air would in theory still exceed its risk-based screening level even though the concentration of benzene was at or below its respective screening level
This suggests that the noncancer, Hazard Quotient posed by TPH in soil vapor for vapor intrusion would still approach three at the point that the concentration of benzene was reduced to a target, 10−6 risk
Summary
Much emphasis has been placed in the past ten-plus years on the potential intrusion of chlorinated solvent vapors into buildings from underlying contaminated soil and groundwater. (5) Calculation of weighted screening levels for TPH based on the carbon range makeup of petroleum vapors, and (6) Calculation of the “critical ratio” of TPH in soil vapor to an individual chemical (e.g., benzene), at which point TPH will drive vapor intrusion risk over the individual compound even when a conservative, target risk is applied to the latter. These tools are applied to two example sets of soil vapor data, the first associated with releases of gasolines and the second from sites associated with releases of middle distillates. The results are used to evaluate the relative role of TPH in vapor intrusion in comparison to traditionally targeted compounds such as benzene
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.