Abstract

Remediation methods for contaminated sites cover a wide range of technical solutions with different remedial efficiencies and costs. Additionally, they may vary in their secondary impacts on the environment i.e. the potential impacts generated due to emissions and resource use caused by the remediation activities. More attention is increasingly being given to these secondary environmental impacts when evaluating remediation options. This paper presents a methodology for an integrated economic decision analysis which combines assessments of remediation costs, health risk costs and potential environmental costs. The health risks costs are associated with the residual contamination left at the site and its migration to groundwater used for drinking water. A probabilistic exposure model using first- and second-order reliability methods (FORM/SORM) is used to estimate the contaminant concentrations at a downstream groundwater well. Potential environmental impacts on the local, regional and global scales due to the site remediation activities are evaluated using life cycle assessments (LCA). The potential impacts on health and environment are converted to monetary units using a simplified cost model. A case study based upon the developed methodology is presented in which the following remediation scenarios are analyzed and compared: (a) no action, (b) excavation and off-site treatment of soil, (c) soil vapor extraction and (d) thermally enhanced soil vapor extraction by electrical heating of the soil. Ultimately, the developed methodology facilitates societal cost estimations of remediation scenarios which can be used for internal ranking of the analyzed options. Despite the inherent uncertainties of placing a value on health and environmental impacts, the presented methodology is believed to be valuable in supporting decisions on remedial interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.