Abstract

Residential and commercial buildings, equipped with systems such as heat pumps (HPs), hot water tanks, or stationary energy storage, have a large potential to offer their consumption flexibility as grid services. In this work, we leverage this flexibility to react to consumption requests related to maximizing self-consumption and reducing peak loads. We employ a data-driven virtual storage modeling approach for flexibility prediction in the form of flexibility envelopes for individual buildings. The risk-awareness of this prediction is inherited by the proposed scheduling algorithm. A Mixed-integer Linear Program (MILP) is formulated to schedule the activation of a pool of buildings in order to best respond to an external aggregated consumption request. This aggregated request is then dispatched to the active individual buildings, based on the previously determined schedule. The effectiveness of the approach is demonstrated by coordinating up to 500 simulated buildings using the Energym Python library and observing about 1.5 times peak power reduction in comparison with a baseline approach while maintaining comfort more robustly. We demonstrate the scalability of the approach by solving problems with 2000 buildings in about 21 s, with solving times being approximately linear in the number of considered assets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.