Abstract

We introduce the stochastic path detection problem and propose a risk-averse solution approach. The problem comprises an invader and a protector that both operate on a network with a number of possible source-destination paths. The protector aims at allocating security resources on the network such that the invader’s path is detected with high probability. The invader’s choice of path is known to the protector in terms of a probability distribution reflecting the protector’s beliefs. Errors in these beliefs induce the risk of a low detection probability. We derive a linear programming approximation and leverage the theory of coherent risk measures to consider risk-aversion with respect to errors in the protector’s beliefs. The performance of the resulting risk-averse detection policy is numerically compared with the performance of the risk-neutral policy. We show that the risk-averse policy significantly mitigates the risk of facing a low detection probability in the presence of large errors in the protector’s beliefs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.