Abstract
Multienergy microgrids are a promising solution to improve overall energy (electricity, cooling, heating, etc.) efficiency. In this paper, a new optimal energy trading strategy is developed considering the risk from uncertain energy supply and demand in a set of individual multienergy microgrids. According to the historical data about energy supply of each microgrid, an aggregator aims to maximize each microgrid's profit while minimizing the risk of overbidding for renewable energy resources trading based microgrids. A novel two-stage stochastic game model with Cournot Nash pricing mechanism and the conditional value-at-risk criterion is proposed to characterize the payoff function of each microgrid. The sample average approximation (SAA) technique is employed to approximate the stochastic Nash equilibrium of the game model. The existence of the SAA Nash equilibrium is investigated and the corresponding Nash equilibrium seeking algorithm is also realized in a distributed manner. The proposed method is validated by numerical simulations on real-world data collected in Australia, and the results show that the SAA Nash equilibrium based strategy can effectively reduce the risk of not meeting the demand and improve the economic benefits for each microgrid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.