Abstract

The influence of the near-fault ground motion on the response of long-span bridges must be considered as a critical factor for seismic design because the response indicates different aspects from existing earthquake characteristics. Also, it is important to note that the safety index for the risk assessment of long-span bridges is determined based on the minimum expected life-cycle cost E(LCC). In this study, earthquake characteristics are analyzed by creating elastic and inelastic response spectrums with actual measurement records (Chi-Chi earthquake records) and then the numerical analysis of the long-span bridge in Namhae, Korea is performed according to the increase and reduction of the member stiffness based on the standard design., the reliability evaluation of the long-span bridge considering aleatory uncertainties is performed on the basis of the combined results of static analysis and seismic response analysis. Also, the minimum LCC is estimated based on failure probabilities by the different alternative design. Because of epistemic uncertainties, the results of reliability evaluation and the LCC of optimal design are selected as random variables; the safety index, failure probability and expected minimum LCC are re-evaluated with regard to critical percentage values for a risk-averse design of the long-span bridge, and are presented graphically using cumulative percentages. It is, therefore, expected that this study will provide the basic information for the risk assessment and optimal design method in performing seismic design of the long-span bridge considering earthquake characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call