Abstract

Urban water supply, transmission, and distribution systems are considered as the basic infrastructures of each community. Deficiency of water resources in system leads to lack of some subscribers’ access to safe water at any time. The water treatment units have a high potential for massive crisis and importance of sustainable performance in water treatment plants, due to their special role in high quantity and quality water supply even in critical situations, requires a comprehensive approach in assessing and increasing the reliability. A comprehensive approach in assessing the performance of water treatment plants and reducing their vulnerability can lead to cost reduction of inappropriate performance in critical situations and also a focus on the most important vulnerable parts of water treatment plants to decrease their vulnerability, as well as cost-effective budgeting in recovery programs. In this research, due to the uncertainties in the input information, two methods of fuzzy fault tree analysis (FFTA) and fault tree analysis (FTA) based on Monte Carlo simulation were evaluated in Jalaliyeh water treatment plant in Tehran, and results of both approaches were compared in terms of uncertainty analysis. The results indicate the low to moderate failure risk in the treatment plant in both approaches and a small difference between results in both cases. Failure probability of top event for FFTA and Monte Carlo-based FTA methods is 0.194 and 0.27, respectively. In the basic event rating, it was found that threats such as inappropriate reservoir design, power equipment failure, transfer pipe failure, and inappropriate maintenance of the pumps play the major role in treatment plant failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call