Abstract

Water resources development plans (WRDPs) is a key element of evaluation for sustainable water supply due to growing needs for adequate and reliable water resources in the human communities by different biodiversity. The development plans should be assessed considering social, economic, and environmental aspects as the criteria of sustainable development and then the risk assessment of the plans should be carried out using the criteria. In this paper, for the first time, risk-based assessment of WRDPs were carried out under the sustainable development framework using Fuzzy Fault Tree Analysis (FFTA). The failure of the plans was considered as the top event based on sustainable development criteria in this approach and then the factors leading to failure occurrence including social, economic, environmental, and water resources failure indices were identified as 14 basic events (BE) through a top-down process in Fault Tree Analysis (FTA). The case study was the water supply system using conventional and non-conventional water resources for Homozgan province in South of Iran. The water resources development plans were evaluated in a model applying two different approaches of crisp and fuzzy for zone number 4 of Makran coastal area and Bandar Abbas city where play significant role in the economic growth of the country. In the both approaches, the failure probability were 38%, 90%, and 50% for the best, worst, and current situation Scenarios, respectively. Taking into account the high computed risk value in the both crisp and fuzzy approaches, the basic events were ranked based on their contribution in the occurrence of the top event. The proposed approach not only addresses the risk of WRDPs in compliance with sustainable development objectives but also facilitates decision-making for the risk management by prioritizing the factors in the failure of plans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.