Abstract

The risk assessment of knowledge fusion in innovation ecosystems is directly related to these ecosystems’ success or failure. A back-propagation (BP) neural network optimized by a genetic algorithm (GA) is thus proposed to evaluate the risk of knowledge fusion in innovation ecosystems. First, an index system is constructed for evaluating the risk of knowledge fusion in innovation ecosystems, and data are collected by questionnaire for use as training data for the neural networks. To realize machine learning, 84 datasets were generated, of which 60 were used to train the network, and 24 were used to test the network in MATLAB (R2014b). Evaluation models were then constructed by the BP neural network and GA-BP neural network, and their accuracy was judged by comparing the evaluation value with the target value. The comparison shows that the GA-BP neural network has faster convergence speed and higher stability, can achieve the goal more often, and reduces the possibility of the BP neural network falling into a local optimum instead of reaching global optimization. The GA-BP neural network model for the knowledge fusion risk assessment of innovation ecosystems provides a new method for practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.