Abstract

In the United States today, there are thousands of miles of an extended network of natural gas pipelines across the nation. Current pipeline explosions and leaks in several regions have challenged the natural gas industry to re-evaluate efforts and to pursue proactive strategies. Safety and the environmental threat has become a primary concern in the United States and around the world, but mostly in cases where natural gases, oil, and other hazardous wastes are intricate. Thus, a significant point in the natural gas pipeline industry that signifies both the economic and social issue is the unplanned pipeline risk. In this article, a quantitative data analysis was performed for Downstate New York companies, Con Edison and National Grid. There, the data from various natural gas pipelines was observed for the trend regarding failing material, failure cause, aging characteristics, and perform a risk assessment to come up with training and risk checklist that could be crucial for risk handling strategies. The statistical analyses of the natural gas pipeline-related incident data for distribution pipelines between 2012 and 2016, which were composed from Pipeline and Hazardous Material Safety Administration (PHMSA) of the United States Department of Transportation (DOT), are compiled. The total miles in the gas distribution pipelines in downstate New York is approximately 48,539 as of 2016. The equipment failure, other incident cause, other outside force, and excavation damages are the leading causes of the pipe-related incidents, which are responsible for over 20% of the total incidents between 2012 and 2016. As a result, a quantitative research methodology has been developed as the suitable approach to achieve risk assessment. Mainly, this approach aims towards risk management in natural gas industry projects using the maximum likelihood method on 70 rupture incidents between 2012 and 2016, which were collected from the PHMSA pipeline incident database. The hypothetical quantitative risk assessment of the gas distribution pipelines are illustrated by combining the statistics of the pipeline rupture incidents, as well as risk assessment performed in the present study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call