Abstract

The majority of fatalities in building fires are attributed to asphyxiation caused by toxic gases. Hydrogen cyanide (HCN) is one of the toxic gases that can be released during a fire, posing a lethal risk to humans even at low concentrations. However, analysis of the risk posed by HCN in fire risk assessments using fire simulations is relatively rare. This study conducted fire simulations to examine the potential risks of HCN to occupants during a fire. The simulations considered various fire conditions in residential buildings by varying fuel types, fire growth rates, and HCN yields. The relative risk score (RRS) was derived based on the time to reach the threshold values of parameters considered critical for life safety. The results of the fire simulations indicated that the RRS for HCN was approximately 20–40 points higher than that of O2, CO, and CO2, reaching a maximum of 92 points. However, the risk posed by HCN was found to be limited in comparison to the risks associated with temperature and visibility. Nevertheless, considering that the primary cause of fatalities in fires is asphyxiation due to toxic gases, HCN must be regarded as a critical factor in fire risk assessments. Additionally, since HCN yield values can increase up to nine times depending on temperature and ventilation conditions, the risk posed by HCN could be significantly higher.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.