Abstract

AbstractCorrosion poses a great risk to the integrity of oil and gas pipelines, leading to substantial investments in corrosion control and management. Several studies have been conducted on accurately estimating the maximum pitting depth in oil and gas pipelines using available field data. Some of the frequently employed machine learning techniques include artificial neural networks, random forests, fuzzy logic, Bayesian belief networks, and support vector machines. Despite the ability of machine learning methods to address a variety of problems, traditional machine learning methods have evident limitations, such as overfitting, which can diminish the model's generalization capabilities. Additionally, traditional machine learning models that provide point estimations are incapable of addressing uncertainties. In the current study, a Bayesian neural network is proposed to include uncertainty in estimating the corrosion defect of a pipeline exposed to external pitting corrosion. The results are then incorporated into a Bayesian belief network for evaluating the probability of failure and its corresponding consequences in terms of social impact, thus forming a comprehensive risk assessment framework. The results of the Bayesian neural network are validated using field data and achieved a testing accuracy of 90%. The framework of the study offers a powerful decision‐making tool for the integrity management of pipelines against external corrosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call