Abstract

The ablative fractional laser is a new modality used for surgical resurfacing. It is expected that laser treatment can generally deliver drugs into and across the skin, which is toxicologically relevant. The aim of this study was to establish skin absorption characteristics of antibiotics, sunscreens, and macromolecules via laser-treated skin and during postoperative periods. Nude mice were employed as the animal model. The skin received a single irradiation of a fractional CO2 laser, using fluences of 4-10mJ with spot densities of 100-400 spots/cm(2). In vitro skin permeation using Franz cells was performed. Levels of skin water loss and erythema were evaluated, and histological examinations with staining by hematoxylin and eosin, cyclooxygenase-2, and claudin-1 were carried out. Significant signs of erythema, edema, and scaling of the skin treated with the fractional laser were evident. Inflammatory infiltration and a reduction in tight junctions were also observed. Laser treatment at 6mJ increased tetracycline and tretinoin fluxes by 70- and 9-fold, respectively. A higher fluence resulted in a greater tetracycline flux, but lower skin deposition. On the other hand, tretinoin skin deposition increased following an increase in the laser fluence. The fractional laser exhibited a negligible effect on modulating oxybenzone absorption. Dextrans with molecular weights of 4 and 10kDa showed increased fluxes from 0.05 to 11.05 and 38.54μg/cm(2)/h, respectively. The optimized drug dose for skin treated with the fractional laser was 1/70-1/60 of the regular dose. The skin histology and drug absorption had recovered to a normal status within 2-3days. Our findings provide the first report on risk assessment of excessive skin absorption after fractional laser resurfacing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call