Abstract
Using digital technologies is essential to gain a competitive advantage in the global market by adapting to new business models. While digital technologies make business processes efficient, they enable companies to make faster and more accurate decisions by automating daily and routine process tasks. Robotic process automation (RPA) automates routine and repetitive business processes, allowing many jobs performed by humans to be performed faster. This way, advantages such as reduced error rates, reduced costs, increased production speed, and labor productivity are provided. For the successful implementation of RPA, potential risks need to be considered. In this study, failure mode and effect analysis (FMEA) based on decomposed fuzzy sets (DFSs), a new extension of intuitionistic fuzzy sets, has been used to evaluate subjectiveness in expert judgments. Differing from the other extensions of fuzzy set theory, the advantage of DFSs is to simultaneously consider decision-makers’ optimistic and pessimistic answers. Thus, the answer given by the decision-maker to the positive and negative questions on the same subject defines the indeterminacy of the decision-maker, and the method takes this indeterminacy into account in the evaluation. This study assesses and evaluates the potential risks of six digital robots in process automation. Thirteen risks were individually assessed for each automated process. This study found “Sustainability challenge” critical in three processes, “Absence of governance management” in two, and “Security“ in one. Variability in risk importance arose from process vulnerabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.