Abstract
Preface. Acknowledgements. PART 1: THEORY. Chapter 1: Review of Probability Theory. 1.1 Introduction. 1.2 Basic Set Theory. 1.3 Probability. 1.4 Conditional Probability. 1.5 Random Variables and Probability Distributions. 1.6 Measures of Central Tendency, Variability, and Association. 1.7 Linear Combinations of Random Variables. 1.8 Functions of Random Variables. 1.9 Common Discrete Probability Distributions. 1.10 Common Continuous Probability Distributions. 1.11 Extreme-Value Distributions. Chapter2: Discrete random Processes. 2.1 Introduction. 2.2 Discrete-Time, Discrete-State Markov Chains. 2.3 Continuous-Time Markov Chains. 2.4 Queueing Models. Chapter 3: Random Fields. 3.1 Introduction. 3.2 Covariance Function. 3.3 Spectral Density Function. 3.4 Variance Function. 3.5 Correlation Length. 3.6 Some Common Models. 3.7 Random Fields in Higher Dimensions. Chapter 4: Best Estimates, Excursions, and Averages. 4.1 Best Linear Unbiased Estimation. 4.2 Threshold Excursions in One Dimension. 4.3 Threshold Excursions in Two Dimensions. 4.4 Averages. Chapter 5: Estimation. 5.1 Introduction. 5.2 Choosing a Distribution. 5.3 Estimation in Presence of Correlation. 5.4 Advanced Estimation Techniques. Chapter 6: Simulation. 6.1 Introduction. 6.2 Random-Number Generators. 6.3 Generating Nonuniform Random Variables. 6.4 Generating Random Fields. 6.5 Conditional Simulation of Random Fields. 6.6 Monte carlo Simulation. Chapter 7: Reliability-Based Design. 7.1 Acceptable Risk. 7.2 Assessing Risk. 7.3 Background to Design Methodologies. 7.4 Load and Resistance Factor Design. 7.5 Going Beyond Calibration. 7.6 Risk-Based Decision making. PART 2: PRACTICE. Chapter 8: Groundwater Modeling. 8.1 Introduction. 8.2 Finite-Element Model. 8.3 One-Dimensional Flow. 8.4 Simple Two-Dimensional Flow. 8.5 Two-Dimensional Flow Beneath Water-Retaining Structures. 8.6 Three-Dimensional Flow. 8.7 Three Dimensional Exit Gradient Analysis. Chapter 9: Flow Through Earth Dams. 9.1 Statistics of Flow Through Earth Dams. 9.2 Extreme Hydraulic Gradient Statistics. Chapter 10: Settlement of Shallow Foundations. 10.1 Introduction. 10.2 Two-Dimensional Probabilistic Foundation Settlement. 10.3 Three-Dimensional Probabilistic Foundation Settlement. 10.4 Strip Footing Risk Assessment. 10.5 Resistance Factors for Shallow-Foundation Settlement Design. Chapter 11: Bearing Capacity. 11.1 Strip Footings on c-o Soils. 11.2 Load and Resistance Factor Design of Shallow Foundations. 11.3 Summary. Chapter 12: Deep Foundations. 12.1 Introduction. 12.2 Random Finite-Element Method. 12.3 Monte Carlo Estimation of Pile Capacity. 12.4 Summary. Chapter 13: Slope Stability. 13.1 Introduction. 13.2 Probabilistic Slope Stability Analysis. 13.3 Slope Stability Reliability Model. Chapter 14: Earth Pressure. 14.1 Introduction. 14.2 Passive Earth Pressures. 14.3 Active Earth Pressures: Retaining Wall Reliability. Chapter 15: Mine Pillar Capacity. 15.1 Introduction. 15.2 Literature. 15.3 Parametric Studies. 15.4 Probabilistic Interpretation. 15.5 Summary. Chapter 16: Liquefaction. 16.1 Introduction. 16.2 Model Size: Soil Liquefaction. 16.3 Monte Carlo Analysis and Results. 16.4 Summary PART 3: APPENDIXES. APPENDIX A: PROBABILITY TABLES. A.1 Normal Distribution. A.2 Inverse Student t -Distribution. A.3 Inverse Chi-Square Distribution APPENDIX B: NUMERICAL INTEGRATION. B.1 Gaussian Quadrature. APPENDIX C. COMPUTING VARIANCES AND CONVARIANCES OF LOCAL AVERAGES. C.1 One-Dimensional Case. C.2 Two-Dimensional Case C.3 Three-Dimensional Case. Index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.