Abstract

This study evaluated dry and wet deposition of atmospheric heavy metals (HMs) in a sandy area of Inner Mongolia, China, with the Dahekou Reservoir, Xilin Gol League, adopted as the study area. Monthly monitoring of atmospheric HM dry and wet deposition was conducted over one year (2021 to 2022) at 12 monitoring points, producing 144 dry and wet deposition samples, respectively. The sample contents of eight HMs (Cr, Ni, Pb, Cu, Zn, Mn, As, and Cd) were determined to estimate the fluxes of available forms of heavy metal (AHM) in dry and wet deposition. The potential ecological index (Eri), risk assessment coding (RAC), and ratio of secondary phase to primary phase (RSP) were used to evaluate the impact of atmospheric HM dry deposition on ecological security. Correlation analysis, principal component analysis, and the absolute principal component scores-multiple linear regression (APCS-MLR) receptor model were used to quantitatively analyze the sources of AHMs in atmospheric dry and wet deposition. The results showed that the study area experienced annual dry and wet deposition fluxes of AHMs of 1712.59 kg and 534.97 kg, respectively. Atmospheric heavy metal dry deposition over the entire year presented a strong ecological risk, with Cd contributing most to this risk. Risk assessment of HM speciation showed that the greatest risks of migration and transformation were for Cd and Pb. The APCS-MLR receptor model identified five and three sources of dry and wet deposition, respectively, in order of proportion of total contribution of: natural wind and sand > road traffic and coal combustion > mineral mining > other human activities > industrial soot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call