Abstract

Soil erosion is a significant form of land degradation worldwide, leading to ecological degradation and a decline in agricultural productivity. The middle section of the northern slopes of Tianshan Mountain (MNSTM) in northwestern China is a high-priority area for soil water erosion prevention, and soil water erosion is a serious problem in the region. Despite this, there is a lack of research on soil water erosion in the MNSTM, and the trends and priority risk areas of soil water erosion remain unclear. Therefore, this study used the Revised Universal Soil Loss Equation (RUSLE) to quantitatively assess soil water erosion from 2001–2020 and predict it from 2030–2050. The study also used the Geodetector method to analyse the influencing factors of soil water erosion in the region. The results show that soil water erosion in the MNSTM has a fluctuating upward trend, increasing at a rate of 0.26 t hm−2 y−1 over the period 2001–2020 and reaching a maximum value of 39.08 t hm−2 in 2020. However, soil water erosion in the region is mitigated under both RCP2.6 and RCP4.5 climate scenarios. Vegetation was found to have the highest degree of influence on soil erosion, indicating that its protection and management should be prioritised for future soil and water conservation efforts. The eastern part of the MNSTM was identified as the most vulnerable area to soil and water erosion, and in the context of global climate change, it is crucial to enhance the ecological restoration of the MNSTM to reduce the risk of soil water erosion. These findings can serve as valuable information for decision makers to develop effective strategies to prevent soil erosion and improve the ecological environment in the MNSTM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.