Abstract

Gradual instability of coal pillars left behind underground with room mining is one of the main reasons for sudden roof caving in the gob, surface subsidence, and other significant hazards. Moreover, room mining implies great losses of coal resources. In this paper, the main failure mode and room mining coal pillar process were analyzed according to the coalfield regional engineering geological and hydrogeological conditions. A numerical model was adopted to study the effect of different sizes of coal mining pillars and progressive instability failure of coal pillar on the plastic zone’s evolution characteristics and stress field of coal pillars in the stope. The proposed technologies of cemented paste backfilling and reinforcement of residual coal pillars are applied, and a numerical simulation model is established to study the strata movement characteristics and analyze the stability degree of residual coal pillar and key aquiclude strata in the Pliocene series of Neogene. Consequently, the performance and application prospect were evaluated. The results obtained substantiate a new method for the long-term stability control of coal pillars in room mining and protecting the ecological environment in China’s western eco-environmental frangible area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.