Abstract
AbstractThe effects of climate change and water scarcity threaten the stability of critical infrastructure systems in developing regions. In particular, the interconnectedness of energy systems, natural resources, economic growth, and social welfare requires a systems‐level framework to identify scenarios which most impact these systems. This paper evaluates and quantifies infrastructure system risk, defined as the influence of scenarios on system priorities. A scenario‐based multi‐criteria preferences model assesses system component priorities for a baseline scenario as well as climate and related scenarios. The shift in priorities between the baseline and other future scenarios define scenario disruptiveness, or level of risk. The methods are demonstrated for the case of the emerging renewable energy sector of Iraq. Twenty‐five renewable energy system assets are prioritized by an assessment of system success criteria, which include economic, social, political, and climate considerations. The system prioritization is reevaluated in the case of seven disruptive scenarios relating to water scarcity, climate volatility, and social and economic shifts. This paper advances methods of the Systems Engineering Body of Knowledge (SEBoK) Part 3: Engineering and Management, by defining system risk and proposing methods for risk identification and risk analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.