Abstract
Conventional Event-Tree (ET) based methodologies are extensively used as tools to perform reliability and safety assessment of complex and critical engineering systems. One of the disadvantages of these methods is that timing/sequencing of events and system dynamics is not explicitly accounted for in the analysis. In order to overcome these limitations several techniques, also known as Dynamic Probabilistic Risk Assessment (DPRA), have been developed. Monte-Carlo (MC) and Dynamic Event Tree (DET) are two of the most widely used DPRA methodologies to perform safety assessment of Nuclear Power Plants (NPP). Since 2012, the Idaho National Laboratory (INL) is developing its own tool to perform Dynamic PRA: RAVEN (Risk Analysis and Virtual ENvironment). RAVEN has been designed in a high modular and pluggable way to enable easy integration of different programming languages (i.e., Python, C++) and coupling with other application including, among the others, several thermal–hydraulic and severe accident codes (e.g., RELAP5-3D, MELCOR, MAAP5, TRACE, etc.). RAVEN is aimed to provide a framework/container of capabilities for engineers and scientists to analyze the response of systems, physics and multi-physics, employing advanced numerical techniques and algorithms. Moreover, RAVEN models stochastic events, such as components failures, and performs uncertainty quantification (UQ). Such stochastic modeling is employed by using sampling strategies among which both MC and DET algorithms, which are going to be employed in this paper. In addition, RAVEN processes the large amount of data generated by sampling the physical models using data-mining based algorithms and risk assessment techniques. This paper provides an overview of the DET methodologies that have been deployed within the RAVEN framework, showing the potential of such techniques for the analysis of complex systems. A brief background of classical methodologies and their limitation is also reported and represent the motivation for the deployment of such dynamic technique. In addition, results from a pressurized water reactor loss of coolant accident scenario, using RELAP5-3D as physical model, are reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.