Abstract

Both domestic and international scholars have conducted in-depth research on wellbore stability issues. They have established various empirical models, analytical models, and numerical simulation methods. However, there is relatively little research on the impact of the uncertainty of input parameters on wellbore stability, and the understanding of this aspect remains unclear. To address this, this paper introduces a probability distribution method. It is based on a wellbore stability mechanical analytical model and, using reliability theory, establishes a method for evaluating wellbore instability risks. By employing the Monte Carlo random simulation method, this study investigates the sensitivity of input parameters to wellbore stability, clarifying that ground stress is the main controlling factor affecting wellbore stability. Combining the analysis of the “felt layer” ground stress profile, this study utilizes two-dimensional simulation experiments to validate the accurate determination of ground stress magnitude in wellbore stability analysis. It also examines the impact of reducing its uncertainty. The results show that this approach significantly reduces the risk of wellbore instability, addressing the challenging issue of identifying wellbore instability in the Qiu Dong Depression’s “felt layer” within the TH Basin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.