Abstract

Uncertainties in simulation models arise not only from the parameters that are used within the model, but also due to the modeling process itself—specifically the identification of a model that most accurately predicts the true physical response of interest. In risk-analysis studies, it is critical to consider the effect that all forms of uncertainty have on the overall level of uncertainty. This work develops an approach to quantify the effect of both parametric and model-form uncertainties. The developed approach is demonstrated on the assessment of the fatigue-based risk associated with a reactor pressure vessel subjected to a thermal shock event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.