Abstract

With the dramatically increased demand for data analysis, statistical techniques play a key role in modern society for both academics and practitioners. Statistical techniques have been evolving from descriptive statistics to statistical inference in fields that require the evaluation of uncertainty and the quantification of risks. With the growing complexity of various fields, such as manufacturing and industrial applications, as well as business decision-making, modeling and quantifying risks has become essential. In this paper, we aimed to use statistical risk analysis and Value at Risk (VaR) to address the decision problem for project portfolios. Traditional economic evaluation criteria used in the management of project portfolios, as they pertain to new product development (NPD), are based on the assumption that pinpoint estimations will remain constant in the future. The assumption that NPD is static, however, is clearly unrealistic due to the inherent uncertainty of NPD projects. In this study, we stress the critical role that uncertainty plays in the selection of NPD portfolios, and clarify the reasons why it must not be overlooked. Using Value at Risk measurements, we show how uncertainty plays a critical role in evaluating and prioritizing NPD portfolios. The implications of this study regarding statistically modeling NPD portfolio decisions are provided for academics and practitioners.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call