Abstract
In recent years, quality control charts have been increasingly applied in the healthcare environment, for example, to monitor surgical performance. Risk-adjusted cumulative (CUSUM) charts that utilize risk scores like the Parsonnet score to estimate the probability of death of a patient from an operation turn out to be susceptible to misfitted risk models causing deterioration of the charts' properties, in particular, the false alarm behavior. Our approach considers the application of power transformations in the logistic regression model to improve the fit to the binary outcome data. We propose two different approaches of estimating the power exponent δ. The average run length (ARL) to false alarm is calculated with the popular Markov chain approximation in a more efficient way by utilizing the Toeplitz structure of the transition matrix. A sensitivity analysis of the in-control ARL against the true value δ shows potential effects of incorrect choice of δ. Depending on the underlying patient mix, the results vary from robustness to severe impact (doubling of false alarm rate).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.