Abstract

The rise of the main meniscus in rectangular capillaries is important in interpreting the phenomenon of fluid flow in porous media. Despite many experimental studies reported in the literature, there is no universal model for the rise of the main meniscus in either rectangular or square capillaries. In this work, we present an extensive experimental study and modeling of the rise of the main meniscus in both square and rectangular capillaries. Experimental work was carried out using three different liquids (water, ethanol, and hexadecane) in borosilicate glass and plastic (polystyrene) capillaries to investigate the effect of the contact angle and capillary size on the equilibrium main meniscus height. A universal model (an extended two-wall model) based on the Laplace equation was developed to predict the equilibrium height of the main meniscus in rectangular capillaries. Results have shown that, in a wide range of capillary sizes and contact angles, the predicted equilibrium heights of the main meniscus are in good agreement with the experimentally measured values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.