Abstract

Early kinetic intermediates observed during the folding of many proteins are invariably compact and appear to possess some secondary structure. Consequently, it has been difficult to understand whether compaction drives secondary structure formation or secondary structure formation facilitates compaction during folding. In this study of the folding of single-chain monellin, it is shown that a kinetic molten globule (MG) is populated at 2 ms of folding. Far-UV circular dichroism (CD) measurements show that the kinetic MG is devoid of any helical structure even under the most stabilizing folding conditions. Multisite fluorescence resonance energy transfer (FRET) measurements show that the kinetic MG is compact with different segments having contracted to different extents. It is shown that the sequence segment that goes on to form the sole helix in the native protein is fully collapsed in the kinetic MG. This segment expands to accommodate the helix as the kinetic MG folds further to the native state, while other segments of the protein contract. Helix formation starting from the kinetic MG is shown to occur in multiple kinetic steps, whether measured by far-UV CD or by FRET.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.