Abstract

The mechanism underlying postprandial glucagon-like peptide-1 (GLP-1) changes after metabolic surgery remains mostly unclarified. This investigation aimed to address whether the vagus nerve-spleen anti-inflammatory axis is involved in the rise in postprandial GLP-1 levels in type 2 diabetes mellitus (T2DM) rats following metabolic surgery. T2DM rat model was established with a high-fat diet and a low dose of streptozotocin and subjected to Roux-en-Y gastric bypass (RYGB) and splenic denervation. A mixed-meal tolerance test for postprandial GLP-1 response was performed. TNF-α in the plasma, spleen, and ileum was measured by ELISA, and alpha 7 nicotinic acetylcholine receptor (α7nAChR) expression in the spleen was analyzed by Western blot. Postprandial GLP-1 improvement by RYGB was accompanied by the reduction of TNF-α levels in spleen and ileum and up-regulation of splenic α7nAChR in T2DM rats. Splenic denervation abrogates a rise in postprandial GLP-1 levels in response to the mixed-meal challenge, along with higher TNF-α levels in spleen and ileum and down-regulation of splenicα7nAChR, compared with denervated sham rats. Our results reveal that the vagus nerve-spleen anti-inflammatory axis mediates the rise of postprandial GLP-1 response after RYGB through lowering TNF-α contents in the intestinal tissue in T2DM rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call