Abstract

We propose novel reconfigurable-intelligent-surface (RIS)-based energy harvesting (EH) systems with linear EH (L-EH) and non-linear EH (NL-EH) models where channels are exposed to Nakagami- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> fading. We also compare two RIS-based EH systems in terms of RIS locations, namely RIS-EH and RIS-information processing (RIS-IP). In the RIS-EH, RIS increases the amount of harvested energy, while in the RIS-IP, RIS is utilized to improve the information processing link. Closed-formed expressions of throughput, outage probability, and average harvested power are derived and confirmed via simulation. The L-EH model overestimates system performance, while the NL-EH model provides a realistic interpretation of EH system design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call